Light and dark in chromatin repair: repair of UV-induced DNA lesions by photolyase and nucleotide excision repair.
نویسنده
چکیده
Nucleotide excision repair (NER) and DNA repair by photolyase in the presence of light (photoreactivation) are the major pathways to remove UV-induced DNA lesions from the genome, thereby preventing mutagenesis and cell death. Photoreactivation was found in many prokaryotic and eukaryotic organisms, but not in mammals, while NER seems to be universally distributed. Since packaging of eukaryotic DNA in nucleosomes and higher order chromatin structures affects DNA structure and accessibility, damage formation and repair are coupled intimately to structural and dynamic properties of chromatin. Here, I review recent progress in the study of repair of chromatin and transcribed genes. Photoreactivation and NER are discussed as examples of how an individual enzyme and a complex repair pathway, respectively, access DNA lesions in chromatin and how these two repair processes fulfil complementary roles in removal of UV lesions. These repair pathways provide insight into the structural and dynamic properties of chromatin and suggest how other DNA repair processes could work in chromatin.
منابع مشابه
Chromatin structure modulates DNA repair by photolyase in vivo.
Yeast and many other organisms use nucleotide excision repair (NER) and photolyase in the presence of light (photoreactivation) to repair cyclobutane pyrimidine dimers (CPDs), a major class of DNA lesions generated by UV light. To study the role of photoreactivation at the chromatin level in vivo, we used yeast strains which contained minichromosomes (YRpTRURAP, YRpCS1) with well-characterized ...
متن کاملThe Trichoderma reesei Cry1 Protein Is a Member of the Cryptochrome/Photolyase Family with 6–4 Photoproduct Repair Activity
DNA-photolyases use UV-visible light to repair DNA damage caused by UV radiation. The two major types of DNA damage are cyclobutane pyrimidine dimers (CPD) and 6-4 photoproducts (6-4PP), which are repaired under illumination by CPD and 6-4 photolyases, respectively. Cryptochromes are proteins related to DNA photolyases with strongly reduced or lost DNA repair activity, and have been shown to fu...
متن کاملCPDs and 6-4PPs play different roles in UV-induced cell death in normal and NER-deficient human cells.
Ultraviolet (UV) light generates two major DNA lesions: cyclobutane pyrimidine dimers (CPDs) and pyrimidine-(6-4)-pyrimidone photoproducts (6-4PPs), but the specific participation of these two lesions in the deleterious effects of UV is a longstanding question. In order to discriminate the precise role of unrepaired CPDs and 6-4PPs in UV-induced responses triggering cell death, human fibroblast...
متن کاملMolecular assessment of UVC radiation-induced DNA damage repair in the stromatolitic halophilic archaeon, Halococcus hamelinensis.
The halophilic archaeon Halococcus hamelinensis was isolated from living stromatolites in Shark Bay, Western Australia, that are known to be exposed to extreme conditions of salinity, desiccation, and UV radiation. Modern stromatolites are considered analogues of very early life on Earth and thus inhabitants of modern stromatolites, and Hcc. hamelinensis in particular, are excellent candidates ...
متن کاملPowerful Skin Cancer Protection by a CPD-Photolyase Transgene
BACKGROUND The high and steadily increasing incidence of ultraviolet-B (UV-B)-induced skin cancer is a problem recognized worldwide. UV introduces different types of damage into the DNA, notably cyclobutane pyrimidine dimers (CPDs) and (6-4) photoproducts (6-4PPs). If unrepaired, these photolesions can give rise to cell death, mutation induction, and onset of carcinogenic events, but the relati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The EMBO journal
دوره 18 23 شماره
صفحات -
تاریخ انتشار 1999